Quantcast
Channel: Which linear maps on a finite field are field multiplications? - Mathematics Stack Exchange
Browsing latest articles
Browse All 2 View Live

Answer by Ben Grossmann for Which linear maps on a finite field are field...

We note that any finite field $GF(p^n)$ can be presented in the form $GF(p^n) = \Bbb Z_p[x]/\langle q(x)\rangle $, where $\Bbb Z_p = \Bbb Z/p\Bbb Z$ and $q$ is an irreducible polynomial of degree $n$....

View Article


Which linear maps on a finite field are field multiplications?

I am mainly interested in the fields $\mathrm{GF}(2^n)$, but the question can be asked for any prime.We can write out each element $x\in\mathrm{GF}(2^n)$ in base $2$ and note that its additive group...

View Article
Browsing latest articles
Browse All 2 View Live